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Abstract: Many changes in our digital corpus have been brought about by the interplay between
rapid advances in digital communication and the current environment characterized by pandemics,
political polarization, and social unrest. One such change is the pace with which new words enter the
mass vocabulary and the frequency at which meanings, perceptions, and interpretations of existing
expressions change. The current state-of-the-art algorithms do not allow for an intuitive and rigorous
detection of these changes in word meanings over time. We propose a dynamic graph-theoretic
approach to inferring the semantics of words and phrases (“terms”) and detecting temporal shifts.
Our approach represents each term as a stochastic time-evolving set of contextual words and is a
count-based distributional semantic model in nature. We use local clustering techniques to assess the
structural changes in a given word’s contextual words. We demonstrate the efficacy of our method
by investigating the changes in the semantics of the phrase “Chinavirus”. We conclude that the term
took on a much more pejorative meaning when the White House used the term in the second half of
March 2020, although the effect appears to have been temporary. We make both the dataset and the
code used to generate this paper’s results available.

Keywords: local clustering; graph-theoretic semantic model; count-based distributional semantic
model; Word2Vec; coronavirus; Chinavirus; sentiment analysis; Twitter corpus analysis

1. Introduction

In most languages, the semantics of words and phrases (“terms”) evolve over time.
Often, the change is gradual and hence is hardly noticeable to an ordinary person in their
lifetime. However, in today’s day and age, certain terms come and go that reflect fleeting
tastes and fads of the times. For example, Merriam-Webster’s Dictionary announced that
it had added 520 new words in 2020, including words such as “COVID-19”. In addition,
during such terms’ short lives, they sometimes take on various semantic meanings before
being discontinued in their use. While definitions of these terms often are not specified,
they can be inferred from their dynamic contexts at respective points in time. A plethora
of recent studies has explored constructing such corpus-based sets using clustering based
on count-based distributional models (for example, see [1–3]). As shown in [4], with the
proper hyperparameter settings, count models’ performance is on par with more popular
neural-net-inspired predictive models. Then, if one were interested in exploring how the
semantics of particular words have evolved over time, one approach could be to construct
such sets at various points in time and compare the sets of synonyms.

However, the current state-of-the-art methods for inferring sets of words with similar
contexts (hereinafter, “thesaurus”) suffer from two main drawbacks. One is the level of
subjectivity involved in deciding the composition of the set of synonyms for each, given
the word. Algorithms typically construct word vectors and compute cosine similarities
to identify potential synonyms (for example, see [1]). Naturally, one has to decide on
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the threshold value for these sets. Perhaps a more fundamental drawback is that there is
no efficient and intuitive method for detecting the so-called “change-points” in a word’s
meaning in time. Manually constructing thesauri at various points in time and comparing
the composition of the sets of synonyms is belaboring at best and lacks rigor. While there
has been a surge in the popularity of neural-network-based predictive models for similarity
tasks and some claims of superiority of such methods over the traditional count models
(see [5,6]), it has been shown that while the predictive models outperform on analogy tasks,
the evidence appears to be more mixed on similarity tasks [4].

To fill these gaps, we propose a dynamic graph-theoretic approach to locally identify a
cluster of the most significant contextual words for a target term that collectively determine
its semantics. We show that for a given metric, such as term-level sentiment scores, one can
use this clustering based on a particular stochastically evolving set process to dynamically
detect change-points in term-level semantics. Our primary analytical tool is the theory
of stochastic processes on graphs, where the nodes in the graph represent the terms in a
corpus, and the edges represent contexts in the sense that the weight of an edge between
two nodes denotes the Hamming distance (i.e., the number of intervening terms) between
them. We construct graphs from these term-level relationships in time-based corpora and
hence allow these graphs to evolve dynamically over time. We demonstrate the efficacy
of our method with the tweets from the first five months of 2020 containing the terms
“Coronavirus”, “Chinavirus”, and their variants (see Table in Section 2 for a complete list of
terms). We analyze ca. 672,000 such tweets in the U.S. in 2020, investigate the contextual
backgrounds of phrases of interest, and detect change-points.

1.1. Literature Review

There is a deep body ofliterature on count-based distributional semantics models. The
literature is rooted in matrix theory, beginning with the influential paper on singular value
decomposition by [7] and numerous extensions [8], and applications in the classic text
by [9]. Reference [10] explored its applications to semantics in their seminal paper, where
they used SVD to represent a large term-by-document matrix in a much lower dimension.
For applications to word-level semantics tasks, reference [11] demonstrated its usefulness
in semantic similarity tasks, and [12] for the semantic association.

In graph theory, there is active research on several domains directly relevant to term-
level semantics. Reference [13] showed that when a graph is transformed into a specific form
of an asymmetric matrix, known as the nonbacktracking operator, certain eigenvectors of
the latter contain helpful information about the community structure of the original graph.
References [14,15] demonstrated the usefulness of a related but symmetric matrix, known
as the Bethe Hessian operator, in performing similar tasks for simple graphs. Reference [16]
showed that for simple graphs of sufficient density, the Bethe Hessian operators could
directly estimate the number of communities in a graph. Reference [17] extended the utility
of the nonbacktracking operator to cover community detection in more complex graphs.
Reference [18] developed the dynamic framework for these matrices. Our objective in this
paper is to connect this rich graph theory to semantics.

A necessary step to make input data amenable for analysis with graph theory is to
transform the data into a matrix. Among the many types of matrix representation that
have been proposed in the literature, one canonical approach is the “term-by-document
type” used in the latent semantic analysis (LSA), where words constitute the rows, and
different documents in which the words appear correspond to the columns [10,19]. Another
approach is “term-by-term” representation, where both the rows and columns correspond
to terms, and the entries in the matrix represent the count of co-occurrences of a given pair
of terms [20]. Several variations of the “term-by-term” method have been proposed, each
attempting to make the values of the entries in the matrix more representative of the true
degree of similarity between a given pair of words [21–23].

When applying community detection methods from graph theory and statistical infer-
ence on graphs, one way to describe the problem of finding a set of strongly associated terms
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could be as follows: after embedding the terms and their contextual words as the nodes
and edges of a graph, partition the nodes into K disjoint clusters such that the difference
between the number of within-cluster and between-cluster edges is large. Methods that can
be used for this task include centroid-based clustering algorithms, such as K-means [24]
and K-medians [25], spectral methods [13–15,26], and deep learning methods [27–29]. K
is often estimated separately using one of many procedures proposed in the literature,
e.g., the hypothesis testing approach with bootstrapping [30], cross-validation [31,32],
semidefinite programming [33], the BIC-based method [34], binary segmentation [35,36],
and spectral method based on a Laplacian of the adjacency matrices [14–16,18]. This class
of approaches to clustering is broadly called “global clustering” because all of the nodes are
partitioned into K disjoint clusters. Applying this approach to textual data would assume
that target words partition contextual words into some K disjoint sets and that each term
serves as a contextual word for exactly one target word.

Several graph clustering methods have been proposed for word semantic detection
tasks, with most being global in scope. Analysis of textual data using its graph represen-
tation dates back to the TextRank algorithm in reference [37], which used global features
of a word corresponding to a node in a graph to determine its relative importance. The
approach in reference [26] was similar to ours, as we will see later, in that it involved a
Markov chain clustering (MCL) on graphs. However, a critical difference is that while our
method derives a small, compact set of contextual words as an embedding for one target
term, the MCL approach clusters all the terms in a corpus, which entails estimating the
total number of clusters in the dataset. As we discuss below in Section 1.2, this estimation
is computationally costly and the resulting time complexity of the MCL is at least quadratic
in the vocabulary size. An approach that is more similar to ours, in that it utilizes local
clustering, is BorderFlow, proposed in [38], where the idea is similar to the MinCut problem
in that it seeks to identify a set of nodes such that the number of outgoing edges from the
border of this set is maximized compared to the edges within the set. However, since the
underlying problem is NP-hard, the algorithm crucially relies on two heuristics without
theoretical guarantees for correctness or complexity.

Subspace clustering methods are closely related to global community detection meth-
ods and have become popular, particularly in image processing [39–41] and computer
vision domains [42–44]. Earlier works in subspace clustering had an overarching challenge
of effectively addressing errors and outliers in the data. Recent developments in subspace
clustering attempt to simultaneously correct possible errors and cluster input data into
appropriate subspaces [45–47]. Similar to global community detection methods discussed
above, these algorithms first construct an affinity matrix based on input data and attempt
to derive an underlying basis matrix that is of lower dimension than the data. For instance,
the algorithm proposed in [45] uses the “self-expressive property”, wherein each data point
can be expressed as an affine combination of other points to identify the underlying bases
of subspaces and chooses the sparsest set of bases to ensure uniqueness and the lowest
possible dimension of the subspaces. Reference [46] further develops sparse subspace
segmentation for a specific type of sensor image data by proposing a sparse representation
of data. Although the research focused on methodologies and applications of subspace
clustering methods has been active in image processing and adjacent domains, it has been
less so in textual analysis, specifically semantic similarity tasks.

There are several studies in the literature on the effect of the practice among certain
conservative political leaders referring to coronavirus as “Chinavirus” on attitudes towards
Asians. Based on a survey of 4311 respondents during the early stage of the pandemic in
the U.S., the authors of [48] presented evidence that anti-Asian attitudes were associated
with xenophobia and concerns about the virus, and that such sentiment was unique
towards Asian-Americans. Among the evidence cited was a significant increase in the
frequency of terms such as “Chinese virus” and “Kung Flu” as Google search terms and
news articles whose keywords included such terms [48] during this period. Authors in [49]
surveyed U.S. adults in May 2020 and found that those that rely more heavily on social
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media and digital news apps were more strongly associated with anti-Asian attitudes.
Reference [50] analyzed over 1.2 million Twitter hashtags from the week before and the
week after President Trump’s tweet containing “Chinese Virus” and found that over 50%
of the hashtags containing “#chinesevirus” had anti-Asian sentiment compared to less than
20% containing “#coronavirus”, representing a significant increase in anti-Asian sentiments
compared to the week before President Trump’s tweet.

1.2. Contributions

There are several challenges with the aforementioned global clustering and subspace
segmentation in term-level semantics. Foremost, these approaches address a different
problem altogether compared to our main stated goal of characterizing the semantics of
a specific term, such as “Chinavirus” and “Coronavirus”. While global clustering and
subspace segmentation attempt to segment the whole input data space into some number
of clusters, term-level semantics needs the identification of only its own cluster. Further,
term-level semantics necessarily calls for a local scope in that one needs to identify the most
informative contextual words that characterize a specific target term, making considering
global structures in corpus networks in subspace clustering superfluous. This calls for an
approach that starts with the target term as the center of locality and builds out the cluster
from this root node by adding informative contextual words.

Second, if a graph is sparse, then the composition of individual clusters becomes
difficult to detect. For instance, there is a general class of random graph models (this
class of random graphs is known as the “degree-corrected block models”, which are
variants of the Erdos-Rényi random graph model with a built-in cluster structure), for
which it has been shown [51] that it is impossible to estimate the underlying clusters
reliably when the within-cluster edge probabilities are not sufficiently higher than the
between-cluster edge probabilities, i.e., the signal-to-noise ratio is not sufficiently high.
More precisely, consider a random graph on N nodes with two clusters, where the within-
cluster (respectively, between-cluster edge) edge probabilities are a/N (respectively, b/N);
then, if (a− b)2 ≤ 2(a + b), it is impossible to detect the clusters reliably. Further, there is
no known effective algorithm to estimate K in the regimes where the average degree of the
input graph (represented by the associated unweighted adjacency matrix) is o(

√
N) [16].

This presents a problem in many tasks involving term-level semantics, since a corpus in the
form of a graph, on average, has the average degree in the order of o(

√
N). For instance,

in a corpus with a vocabulary of size 40,000, the average degree of an unweighted graph
constructed with the “Word2Vec” representation for each term would fall far short of 200.
For subspace segmentation methods, sparse data present exogenous constraints in the
“self-expressive property” since sufficiently dense data are needed to represent a given
data point.

Third, global and subspace clustering methods partition the nodes of the input graph
into a few large clusters whose sizes are proportional to the size of the input graph. How-
ever, in the case of many tasks involving term-level semantics, obtaining a fixed number
of global clusters, even as the size of the input data grows, would not be useful as they
will be too coarse. Instead, one is often interested in a more granular identification of a
small set of core contextual words that determine the semantics of a target term, where the
number of such sets is allowed to grow proportionally to the total number of terms in the
input corpus.

Fourth, most of the global clustering requires constructing a matrix of “term-by-
term” type of dimension equal to the vocabulary size on which certain matrix operations
are performed. However, even a moderate vocabulary having 40,000 terms involves a
very large matrix (a matrix of size 40,000 × 40,000, which is too big to fit into a 16 GB
RAM on a standard personal computer), so the computational complexities (e.g., for
obtaining the eigenvalues and eigenvectors) would make most algorithms impractical in
most workstations (the computing time needed to obtain the eigendecomposition is known
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to be at least quadratic in the size of the input. More precisely, for an input of size M× N,
the computational time is O(Nδ) for some δ ∈ (2, 3)).

In light of these challenges, we propose a local clustering method based on a specific
stochastically evolving set process to investigate the semantics of target terms, as it offers
several appealing advantages. Foremost, the local cluster sizes for a target term are much
smaller (and are often a small constant) than those expected from the global clustering
methods. The local clustering algorithms build out the cluster starting from a singleton
set; hence, given multiple possible clusters with identical conductance, the smallest one
is always chosen. Consequently, local clustering is more informative and tractable as it
outputs a statistically significant set of contextual terms for a given target word based on
the desired sparsity (measured by conductance) and density (measured by the volume) of
the resulting set.

Second, our approach is unsupervised and automatically constructs word embeddings
for target terms. Hence, it is tractable for nonexperts to use on new corpora, such as digital
text on social media platforms, without the need for training.

Third, compared to the time complexity of many global clustering algorithms
(e.g., those involving some eigendecomposition step and hence requiring O(Nδ) com-
puting time for some δ ∈ (2, 3)), the local clustering algorithms are computationally much
more efficient whose computational time complexity is determined by the size of the output
set, which can be predetermined as a fixed quantity. Although the problem of finding
the sparsest cut is known to be NP-hard, the local clustering algorithm based on [52] that
we employ makes use of Markov chains to explore various cuts and chooses a set that is
close to the optimal with high probability. As a result, our local clustering algorithm does
not need to compute the eigendecomposition of a large matrix and can achieve a constant
computational complexity in the size of the corpus by fixing the size of the output set,
which directly determines the dimension of the word embedding.

To demonstrate the efficacy of our approach, we apply the local clustering method
to the Twitter dataset and identify a cluster of contextual words for each target term at
different time periods. We then investigate progressions of the changes in the semantics of
a target term by observing the changes in the composition of its local clusters. To detect
whether there has been a change-point, we compare the target term semantics inferred from
its local cluster to its (1) “cross-sectional” control, i.e., the local cluster of another target
term for a given time period; and (2) “temporal” control, i.e., the target term’s clusters in
previous time periods. The technical details of the local graph clustering algorithm we
propose to adapt for use in semantic shift detection here are developed in detail in [52], and
we refer to that resource for a complete treatment of the subject.

Specifically, we study the changes in the composition of semantic clusters of our
phrases of interest in and around the time when the White House used the phrase “Chi-
navirus” and variants thereof (see Table 1) on at least 20 occasions from 15 March through
31 March 2020 [53]. Similar to previous instances of naming large-scale pandemics using
geographical identifiers, such as Middle East Respiratory Syndrome (MERS), Ebola, and
Spanish flu, the term “Chinavirus” drew widespread concerns due to the potential harm
it may cause the Asian-American community in the form of discrimination, while the
administration maintained that the phrase was neutral and synonymous with the more
mainstream “Coronavirus”. We investigate whether there was a shift in the meaning and
sentiment of the phrase “Chinavirus” around the 2-week period it was used.

In summary, the main contributions of this paper are as follows.

1. An unsupervised algorithm based on local graph clustering to automatically charac-
terize and detect shifts in term semantics:

(a) Clusters are incrementally built out, starting with the target term as the center
of locality and adding to the cluster contextual words that meet the user-
defined thresholds for informativeness and the word embedding dimension;

(b) It has constant time complexity, where the constant is the user-defined descrip-
tion length for the target term, and hence is scalable in the size of the corpus;
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(c) The resulting “soft clusters” allow clusters of different terms to overlap to
varying degrees.

2. A novel empirical analysis of the semantics of the term “Chinavirus”:

(a) Along the time dimension, the term took on significantly, albeit temporarily,
more negative sentiment soon after its use by the White House in March 2020;

(b) Compared to the control term “Coronavirus”, the semantics of “Chinavirus”
diverged significantly in March 2020.

Table 1. Equivalence classes of target terms.

“Chinavirus” “Coronavirus”

Chinavirus Chinacovid Coronavirus Coronaviruses
Chinaviruses Chinesecovid Covidvirus Covidviruses
Chineseviruses Chinesevirus Caronavirus Caronaviruses
Chinacorona Wuhanviruses Virus-corona Virus-covid
Wuhancovid Wuhancorona Coronaflu Coronoviruses
CCPVirus CCPCoronavirus Coronacovid Covidcorona
Wuhanchinavirus Coronaoutbreak Coronovirus
Wuhanchinaviruses
Chinawuhanvirus
Chinesecoronavirus
Chinesecoronaviruses
ChineseCommunistPartyvirus
ChineseCommunistPartyviruses

2. Materials and Methods
2.1. Notation and Terminology

We use [N] to denote the set of natural numbers {1, 2, ..., N}. For any nonnegative
functions f (·) and g(·) on the set of natural numbers, we write

f (n) ∈

 O(g(n)) if lim supn→∞
f (n)
g(n) < ∞

o(g(n)) if lim supn→∞
f (n)
g(n) = 0

For any given set S of words and phrases (collectively referred to as “terms” here-
inafter), Sc refers to the complement of S in some corpus. We denote a single-layer and
undirected graph by G := (V, E) having |V| =: N terms (nodes) denoted {1, 2, . . . , N}
and |E| =: m edges. A′ denotes the unweighted adjacency matrix of G, so the rows and
columns of A′ are indexed by the set of terms [N] and A′ij equals 1 (respectively, 0) if there
is an (respectively, no) edge between the nodes i and j, or in other words, the terms i and j
appeared in a tweet together. For two subsets of nodes Sa, Sb ⊂ [N], the total number of
edges between the nodes in Sa and those in Sb is denoted by e(Sa, Sb). Given k ≥ 1 and a
pair of terms i and j, let wij,k be the reciprocal (respectively, 0) of the number of intervening
terms between i and j in the k-th tweet if i and j were (respectively, not) present in the
k-th tweet. Let wij := ∑k∈[|C|] wij,k, where |C| denotes the size of the corpus in terms of
the number of tweets. Let W denote the N × N weighted matrix whose (i, j)-th element
is wij[∑j′∈[N] wij′ ]

−1, which is the row-normalized transform of wij. Then, the weighted
adjacency matrix A is defined by the elementwise product of A′ and W, i.e., Aij := A′ijWij

for all i, j ∈ [N]. A is the main matrix that we work with in this paper. The weighted matrix
is created with the notion that the closer the terms are in a text, the stronger their semantic
relationship. The degree of node i ∈ [N] is the sum of the i-th row of A and is denoted by
d(vi) or, simply, di.

For a subset of nodes S ⊂ V, its volume vol(S) is defined to be the sum of the degrees
of all the nodes in S, i.e., vol(S) := ∑i∈S di. We denote the number of outgoing edges
from a set of nodes S by ∂(S) := |{(i, j) : Aij > 0, i ∈ S, j ∈ Sc}|. The conductance φ(S)
of a set of nodes S ⊂ V is defined as φ(S) := ∂(S)/vol(S). The conductance φ(G) of a
graph G denotes the minimum among all φ(S) where S ⊆ V satisfies vol(S) ≤ vol(V)/2.
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Clearly, φ(V) = 0. The two-sided vertex boundary δ(S) of a set of nodes S is defined as
δ(S) := {v : v ∈ S and e(v, Sc) > 0} ∪ {v : v ∈ Sc and e(v, S) > 0}.

Following [52], we define the cost of a finite path (S0, S1, . . . , St) associated with the
set process (St, t ≥ 0) to be

cost(S0, S1, . . . , St) := vol(S0) +
t

∑
i=1

(
vol(Si∆Si−1

)
+ ∂(Si−1)

)
,

where ∆ denotes the symmetric difference of sets.
For a given target term v0, the contextual words for v0 are those that are more strongly

associated with v0 than any other target word, where the strength of this association is
measured by the edge weights. The contextual words for v0 are identified by its local
cluster, which we discuss next.

2.2. Local Graph Clustering Algorithm in [52]

Our approach adapts a general-purpose local clustering algorithm from the applied
probability theory literature [52]. It is a variation of the evolving set process (ESP), where a
set evolves depending on the transition probability to other sets defined by their constituent
vertices. In summary, the algorithm simulates a Markov chain (called Vb-ESP) on a subset of
nodes of a graph until a specific stopping time that is defined in terms of target conductance,
set volume, and cost is reached. The end result is a nonexpanding set of a fixed, user-
specified volume that constitutes the dimension of the target term embedding. For a
detailed treatment of the technique and the technical details of its development, we refer to
reference [52]. For the sake of clarity, we restate the local clustering algorithm as proposed
in [52] as Algorithms 1 and 2. In Section 2.3, we describe how we adapt Algorithms 1 and 2
to semantic term embedding and change detection tasks.

2.3. Adapting the Local Graph Clustering Algorithm for Semantic Analysis

A necessary step to precede Algorithms 1 and 2 is the construction of a “term-by-term”
matrix to which the algorithms are applied. The entries in the matrix correspond to the
Hamming distance between a given pair of terms. Details of the preprocessing step are
given in Section 3. The inputs into Algorithm 1 are integers T (the maximum number of
algorithm iterations), B (total budget for costs incurred in terms of incremental changes
made in obtaining S), κ (the threshold volume of S), and Φ (target conductance). St(v0)
denotes the subset of V that contains the target term v0 at time t. When the target term is
obvious in the context or is irrelevant, St is used. The finite sequence (St, t ∈ [T]) denotes a
stochastically evolving set process (ESP) and (vt, t ∈ [T]) denotes a Markov chain over the
nodes of V. The desired cluster of contextual terms S for the target term v0 results from an
ESP {St} by adding and removing terms chosen via a lazy Markov chain {vt} on V.

Next, we describe the adaptation of Algorithm 1 to the task of semantic analysis.
Line 1: S is initially set to S0 := {v0}. For the purposes of our empirical demonstration,

v0 here is set to either of {“Chinavirus”, “Coronavirus”} and their equivalent terms as
shown in Table 1.

Lines 2–4: Given {vt−1 = u} at step t− 1, we sample (in Lines 3 and 4) vt at step t
based on the probability kernel p(u, ·), where the transition probability kernel p(·, ·) for the
Markov chain vt is given by

p(u, w) := P(vt = w|vt−1 = u) =


1/[2d(u)] if (u, w) ∈ E
1/2 if u = w
0 otherwise

Define p(u, A) := ∑w∈A p(u, w) for A ⊆ V. Line 5: Having chosen vt at step t, we sample
a threshold Z uniformly between 0 and p(vt, St−1), where St−1 is the value of the ESP at
step t− 1.
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Algorithm 1 GenerateSamples [52]
Input: Target term v0, nonzero integers T, B, κ, target conductance Φ ∈ [0, 1].
Output: A set Sτ from the volume-biased ESP with the stopping time τ depending on

input parameters τ = τ(T, B, Φ, κ).
Internal State: A set Sτ from the volume-biased ESP with τ = τ(T, B, Φ, κ); the current

location vt of the random walk; ∂(St), vol(St), and cost(S0, ..., St) for the current set St.
1: Initialize S = S0 = {v0}
2: for t = 1 to T do
3: Given vt−1, select vt with probability
4: p(vt−1, vt) and update X ← vt
5: Lookup p(vt, St−1) and pick Z ∼ Uni f [0, p(vt, St−1)].
6: Define St = {u | p(u, St−1) ≥ Z}, D = ∅.
7: for all u ∈ δ(St−1) do
8: if p(u, St−1) ≤ Z and u ∈ St−1∆St then
9: Add u to D

10: end if
11: end for
12: Update vol(St) and cost(S0, ..., St)
13: if t = T or cost(S0, ..., St) > B then
14: return S = St−1∆D
15: end if
16: Update S← St = St−1∆D by adding or removing vertices in D from S
17: Update ∂(St), φ(St) = ∂(St)/vol(St)
18: if φ(St) ≤ Φ and vol(St) ≤ κ then
19: return S
20: end if
21: end for

Algorithm 2 EvoPar(v, k, φ, ε) [52]
Input: Target term v0, target volume k, target conductance φ ∈ [0, 1], a constant ε ∈ (0, 1).
Output: A set S of vertices.

1: T ← ε log k/6φ
2: Run in parallel kε/2 independent copies of GenerateSample(v0, T, ∞, κε/2(k), Φε/2(φ))
3: if Any of the copies finds S satisfying vol(S) ≤ κε/2(k) and φ(S) ≤ Φε/2(φ) then
4: return S
5: end if

Line 6: St is obtained at step t from St−1 using the threshold Z and the kernel p(·, ·).
The threshold Z is needed to ensure that {St} defined in Line 6 does not vanish. This is
because {St} can vanish if the threshold probability Z, which is used in adding nodes, can
be arbitrarily high. This variant of ESP is coupled with the random walk {vt} and is called
Vb-ESP. The set transition probability kernel K(·, ·), where K(A, B) := P(St = B|St−1 = A),
is adjusted by the product of the ratio of the volumes of the two arguments of K(·, ·). It
is well known that the mixing time of the underlying Markov chain {vt} in Vb-ESP is
bounded by the Cheeger expansion constant. With constant probability, this process results
in set S with conductance and volume close (to be more precise, φ(S) = O(

√
φ/ε) for

target conductance φ and parameter ε ∈ (0, 1), and vol(S) = O(k1+ε) for target volume k)
to the desired quantities in O(log N) time complexity. We set the target conductance to 0.3
and the volume threshold to 0.01N. Multiple iterations of it are run to ensure the resulting
S meets the specific thresholds for conductance and volume.

Lines 7–11: For a set S, p(u, S) denotes the transition probability from the current
term u to any w ∈ S:

p(u, S) := ∑
w∈S

p(u, w) =
1
2

(
e(u, S)
d(u)

+ 1{u∈S}

)
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where e(u, S) := |{(u, w) : (u, w) ∈ E, u ∈ S}|. The stationary probability distribution for
the nodes in the graph is given by

πS(u) =
{

d(u)/vol(S) if u ∈ S
0 otherwise

The transition probability matrix for the random walk described here is expressed as
P := 1

2 (M
−1A + I), where M is the diagonal matrix whose element Mii is the sum of the

i-th row of A, i.e., degree of the i-th node in A.
Line 12: We update the values for vol(St) and cost(S0, ..., St), which are tested against

the stopping conditions in Lines 13 and 18. Line 13: A stopping condition based on the
number of iterations T and total cost B for the value in Line 12. Line 17: We update the
values for the number of outgoing edges from St and the conductance to test against the
stopping conditions in Line 18. Line 18: A stopping condition based on conductance Φ and
volume κ for the value in Line 17.

Given current S1, the ESP proceeds to the next state S2 in Algorithm 2. Given the
threshold Z ∼ Unif[0, 1] and S2 = {u : p(u, S1) ≥ Z) , the volume-based ESP is an ESP
with the transition kernel:

K̂(S, S′) =
vol(S′)
vol(S)

K(S, S′)

where K(S, S′) is the transition kernel for the ESP. Due to the Diaconis–Fill coupling, the
transition probability from the current state (vt, St) is

P[vt+1 = w : vt = u, St = S] = p(u, w)

P[St+1 = S′ : St = S, vt+1 = w] =
K(S, S′)1{w∈S′}

P[w ∈ St+1 : St = S]

Hence, a node vt+1 is selected from the transition kernel, and St+1 from the ESP
transition kernel, from those sets containing vt+1.

Below, we describe the adaptation of Algorithm 2 for the purpose of semantic analysis.
Input: The inputs into Algorithm 2 are a starting vertex v ∈ V, a target conductance

φ ∈ (0, 1), target volume k > 0, and ε ∈ (0, 1).
Line 1: Set the maximum total number of iterations T as given.
Line 2: Run in parallel withAlgorithm 1 with the given set of parameters. Multiple

threads of local clustering are run in parallel since there is a chance that a target term v0
exits its cluster St at some t ∈ [T].

Lines 3 and 4: When the stopping time τ is reached by the algorithm, the Sτ that is
returned is the contextual set S for the target term v0. With inputs k (target volume), Φ
(target conductance), and constant ε ∈ (0, 1) into the algorithm, the contextual cluster S
output by the algorithm has conductance O(

√
Φ/ε) and volume of at least half of any set

with conductance at most Φ and volume at most m1−ε/c with absolute constant c > 0.
For any stopping time τ, this procedure has been shown to output at least one incidence

of St with φ(St) ≤ O(
√

log vol(Sτ)/τ) [52].
We apply this algorithm to the corpus comprising tweets containing “Chinavirus”,

“Coronavirus”, and similar terms, which we denote by “equivalence classes of terms” for
nine 2-week periods surrounding the second half of March 2020. The significance of
this time period is due to the White House’s use of the term “Chinavirus” on at least
20 occasions [53] during this period. In Table 1, we list all the target terms by equivalence
classes we performed local clustering on. Once local clusters for each target term are
identified, we look up term-level sentiment scores for all terms in the clusters using the
package AFINN [54] in the Python programming language. It uses a numerical scale from
−5 to +5, with−5 denoting the most negative, +5 the most positive terms, and 0 the neutral
sentiment. We then compare the sentiment score distribution of the “Chinavirus” cluster in
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the second half of March to those in other 2-week periods (“temporal control”) as well as
“Coronavirus” clusters over the same time periods (“cross-sectional control”).

3. Datasets

Our data are composed of geotagged public tweets containing the target query terms
“Chinavirus”, “Coronavirus”, and variants thereof originating from within the United
States from the period spanning the second half of January through the second half of
May 2020. The tweets were limited to those written in the English language. The tweets
and the accompanying metadata were downloaded from the Twitter Server via the Twitter
Developer Application Programming Interface (API) Early Access version 2 between
20 April and 11 May 2021.

Several variations of “Chinavirus” and “Coronavirus” were used on Twitter in terms
of spelling and concatenations with other words. In our preprocessing step, we grouped
these variations together into a set that we call “equivalence class”. As a result, we had two
“equivalence classes”, one for each of “Chinavirus” and “Coronavirus”, and treated each
term in an equivalence class as the same, in effect making the cluster for each target term
a union of clusters of the constituent terms in its equivalence class. The compositions of
these equivalence classes for the two target terms are shown below in Table 1.

We used the NLTK library in Python to apply the standard preprocessing step of
tokenization and normalization and removal of frequent stop words and rare contexts that
appear fewer than 100 times in our Twitter corpus. We applied other common preprocessing
steps to remove capitalization and apply lemmatization and stemming.

The resulting dataset consisted of a corpus of 9,275,358 words representing a vocab-
ulary size of 119,614 terms based on 747,737 tweets posted by 204,488 authors. Table 2
displays the breakdown of the dataset by 2-week intervals.

Table 2. Descriptions of corpora by 2-week intervals.

Period a Words b Vocabulary b Tweets b AuthorIDs b

Jan2H 123,874 10,985 10,462 8881
Feb1H 129,545 12,286 10,748 7190
Feb2H 363,394 20,113 17,639 10,927
Mar1H 2,261,059 52,724 176,386 93,339
Mar2H 2,745,589 65,138 215,908 99,069
Apr1H 1,322,025 45,444 99,874 47,457
Apr2H 866,074 37,137 65,139 31,404
May1H 593,134 30,621 43,706 21,972
May2H 432,832 25,620 32,425 17,494

a “1H” represents the first half and “2H” the second half; b represents the numbers of unique counts for each
2-week interval.

In Section 4, we analyze the progression of the semantics of the equivalence classes of
terms “Chinavirus” versus “Coronavirus”, where the latter term is used as a control. We
then test the efficacy of our method with (1) the benchmark Word2Vec embeddings and
(2) studies on the effect of “Chinavirus” on public sentiment as reported in the literature.

4. Results

Soon after the phrase “Chinavirus” started appearing in the administration’s public
statements on 16 March 2020, the number of tweets containing the phrase “Chinavirus”
sharply increased. As is evident in Figure 1, the daily count of such tweets increased from
less than 500 to more than 3500.
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Figure 1. Daily count of tweets containing “Chinavirus”. The red vertical lines denote the period
16 March through 31 March 2020 when the phrase “Chinavirus” and its variants were used by the
White House.

To identify the clusters of the two phrases, we perform local clustering, as discussed
in Section 2.3, and its algorithm, presented in Section 2 as the Algorithms 1 and 2. We
assigned the equivalence classes of “Chinavirus” and “Coronavirus” to be the starting
nodes v0, with the latter as a control node to place the temporal progression of the former in
perspective. Below is the set of words that are clustered together with “Chinavirus” for the
first half of March (Table 3), followed by the cluster for the second half of March (Table 4).
One can readily see that the sentiment noticeably became negative in the second half.

Table 3. Cluster of “Chinavirus”, 1–15 March 2020.

restaurant livestock divulge hotpot wheel floor
remainder initiative Chinese gaslit storm fight

designation sacrifice married undone funny front
inevitable historical forward global sadly army
sabotaging possible quicker insult guess sight
investment together strategy faster slump drug
supervisor ingenious suspend spiral unite alive

Table 4. Cluster of “Chinavirus”, 16–31 March 2020.

overreach quarantine cronies apologizes exile scare
morality panicked kissing moronovirus abject stud
mourner sacrifice laughts accusation goofy dog
antiviral baselessly urine compassion poked hoax
pollution espionage fucked overwhelmed clout loser
assassin dripping evils prohibition risking alien
exposure inability outrage unbecoming stroke secrets
derailed enflames destroy denounce namaste nutjob
tearful dumbkirk debunk discharges cooking chased

butthead robbing selfish dangerous diarrhea cheat
debunk despair huawei heartattack ill protest
scream gorillas thrive concussion mystery alarmed

repellant distance chaotic marauding follies bedbug
migraine prosecute purifier exterminate illicit racism
explodes pangolin lizard reelection fuck kloots

As a reference, the clusters for the control term “Coronavirus” for the same two periods
are shown in Tables 5 and 6. Compared to the clusters for “Chinavirus” over the same
periods, one can see that there is no noticeable variation in sentiment.
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Table 5. Cluster of “Coronavirus”, 1–15 March 2020.

cancellation robitussin interfere greenlit bravely nuk
disruptions humiliates overcome prophecy disobey ease
animalistic equanimity pharmacy hosepipe unmask sigh

moisturized heatstroke decouple cheapgas service fiery
envelopment propagate guillotine confront dirty gosh
untouchable retraction crackhead helpless pumped goofy
overeacting perpective concerned funeral punitive piss
perpetuates inadequate scramble ecstatic midget cost
breathmints planetizen deadlier colonial faceass fuel
precipitate unfriended populism educate

Table 6. Cluster of “Coronavirus”, 16–31 March 2020.

hospitable collapsed crackpot pumped stranger nuk
celebration blockhead feckless pissing breach ease

overshadow possessive regarded sodexo nutcase bane
excellence expensive rampage stabbed reckless dirty

deprivation disappear bungling unstable ghetto revive
panoramic apologize evacuate cringed fucking goof

fucknugettes strangled punitive squeak cleanly ruined
martyrdom virulence prevent flagging midget dirt
determined reputable kickback badass faceass sigh
contender downside delusional babble

We now look at the distributions of the sentiment scores for both terms over time.
Figure 2 displays the temporal progression of the distribution of the contextual words
by their sentiment scores for “Chinavirus”, where more negative scores denote relatively
more negative words and positive scores positive on the scale of −5 to 5. It is apparent
that the distribution is more concentrated around a negative score of −3 on 2 March,
when the White House made use of the phrase “Chinavirus”. More formally, using the
Kolmogorov–Smirnov test as implemented in the SciPy Python package, we are able to
reject, with a p-value of less than 0.001, the null hypothesis that the sentiment scores on 2
March came from the same distribution as those in the other 2-week periods. Using the
Mann–Whitney U-test in the SciPy package, we conclude, with a p-value of less than 0.001,
in favor of the hypothesis that the sentiment scores on 2 March are lower than those in the
other periods and the sentiment scores of the cross-sectional control, “Coronavirus” (see
Section 2 for discussion).

Figure 2. Sentiment score distribution of contextual words of “Chinavirus”.

As a point of reference, Figure 3 displays a similar chart for the term “Coronavirus”.
Compared to “Chinavirus”, there is no visible shift in the distribution of the sentiment scores.
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Figure 3. Sentiment score distribution of contextual words of “Coronavirus”.

Next, we checked the effectiveness of our method in two ways. First, we note that this
shift in the sentiment distribution of “Chinavirus” in March, compared to its distributions
in previous periods and those of “Coronavirus”, is consistent with what was reported in
references [48–50]. Second, we transformed the vocabulary in each 2-week period into
Word2Vec representations using the Gensim package in the Python programming language
and identified a set of synonyms for each of the two target terms. Synonyms in Word2Vec
are defined in terms of cosine similarity, and we classified terms in the vocabulary as
synonyms if their cosine similarity measures were at least 0.3. Figures 2 and 4 show that
the sentiment of the synonyms of “Chinavirus” clearly shifted more negative compared to
surrounding periods in the second half of March 2020.

Figure 4. Sentiment score distribution of Word2Vec terms with cosine similarity score of at least 0.3
compared to “Chinavirus”.
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5. Discussion

As new additions to the English language, terms such as “Chinavirus” present a
significant challenge when one tries to ascertain its semantics and perform analogy tasks
to other related terms such as “Coronavirus”. In the absence of a definitive source for
the semantics of such terms, we propose to characterize the semantics of novel terms by
looking at their clusters of strongly associated words and phrases, staying true to John
R. Firth’s famous quote that “[y]ou shall know a word by the company it keeps” [55]. To
obtainthe granular clustering that allows for a differentiation of two closely related terms,
we use “local” clustering, as implemented in [52], to build out an informative cluster of
contextual words, starting with the singleton set containing the target term and stopping
once a target conductance or cluster size is reached. By comparing the composition of the
term’s clusters’ composition over time and the “control” terms, one can reasonably infer if
the term’s semantics have changed over time and how it compares to other terms.

Our approach makes the following contributions. Compared to existing graph cluster-
ing algorithms, our method identifies a local cluster of contextual words that is tailored
only to a specific target term, thus making the cluster more informative and compact for
inferring term-level semantics. Because our approach does not make use of the information
about global structures of corpus graphs, it avoids performing unnecessary work, such as
clustering all words in the input data, and hence is computationally efficient with constant
time complexity. Our method allows clusters of two different target terms to overlap, which
is more intuitive and consistent with how one thinks about the semantics of words than
partitioning contextual words into disjoint clusters, as performed in global clustering and
some of the subspace segmentation methods. Lastly, we provide a rigorous confirmation
of the results in the existing literature that observe that the use of “Chinavirus” and its
close variants by the White House in March of 2020 is associated with a significant increase
in negative sentiment in public discourse compared to earlier months and compared to
“Coronavirus” as the control.

For future study, one possible application of local clustering is the construction of a
thesaurus. The current approach to thesaurus construction does not allow for efficient and
intuitive detection of the so-called “change-points” in a word’s meaning in time. Manually
constructing thesauri at various points in time and comparing the composition of the sets
of synonyms is belaboring at best and lacks rigor. Applying local clustering, one could
infer from any statistically significant change in cluster composition, from one period to
another, a change-point in the thesaurus, suggesting that semantic changes in certain words
took place.
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